Modeling Self-Diffusion in Mixed-Solvent Electrolyte Solutions
نویسندگان
چکیده
A comprehensive model has been developed for calculating self-diffusion coefficients in mixedsolvent electrolyte solutions. The model includes methods for calculating the self-diffusion coefficients of ions and neutral species at infinite dilution and for predicting the effect of finite concentrations of electrolytes. For limiting diffusivities, a mixing rule has been developed for predicting the diffusivity in multicomponent mixed solvents using the limiting diffusivities or ion conductivities in pure solvents. The effect of finite concentrations of electrolytes is modeled by combining the contributions of long-range (Coulombic) and short-range interactions. The longrange interaction contribution is obtained from the mean spherical approximation theory of the relaxation effect, while the short-range interactions are represented using the hard-sphere model of diffusion. Aqueous species are characterized by effective species diameters, which are defined to reflect the interactions between the components of the solution. The model has been integrated with a thermodynamic speciation model, which makes it possible to take into account the effects of complexation or other reactions in the solution. The model accurately reproduces experimental self-diffusion coefficients of ions and neutral molecules in mixed solvents over wide ranges of concentrations.
منابع مشابه
Pii: S0378-3812(01)00645-8
Recent advances in modeling thermodynamic and transport properties of electrolyte solutions are reviewed. In particular, attention is focused on mixed-solvent electrolyte models, equations of state for high-temperature and supercritical electrolyte systems and transport property models for multicomponent, concentrated solutions. The models are analyzed with respect to their capability of comput...
متن کاملModeling the Thermodynamic Properties of Solutions Containing Polymer and Electrolyte with New Local Composition Model
A new theory model based on the local composition concept (TNRF-modified NRTL (TNRF-mNRTL) model) was developed to express the short-range contribution of the excess Gibbs energy for the solutions containing polymer and electrolyte. An equation represented the activity coefficient of solvent was derived from the proposed excess Gibbs energy equation. The short-range contribution of interaction ...
متن کاملGENERAL RESEARCH Modeling Electrical Conductivity in Concentrated and Mixed-Solvent Electrolyte Solutions
A comprehensive model has been developed for calculating electrical conductivities of aqueous or mixed-solvent electrolyte systems ranging from dilute solutions to fused salts. The model consists of a correlation for calculating ionic conductivities at infinite dilution as a function of solvent composition and a method for predicting the effect of finite electrolyte concentration. The effect of...
متن کاملModeling viscosity of concentrated and mixed-solvent electrolyte systems
A comprehensive model has been developed for calculating the viscosity of aqueous or mixed-solvent electrolyte systems ranging from dilute solutions to fused salts. The model incorporates a mixing rule for calculating the viscosity of solvent mixtures and a method for predicting the effect of finite electrolyte concentrations. The mixing rule represents the viscosity of multi-component solvent ...
متن کاملModeling Viscosity of Aqueous and Mixed-Solvent Electrolyte Solutions
A comprehensive model has been developed for calculating the viscosity of aqueous or mixed-solvent electrolyte systems ranging from dilute solutions to fused salts. The model incorporates a mixing rule for calculating the viscosity of solvent mixtures and a method for predicting the effect of finite electrolyte concentrations. The mixing rule represents the viscosity of multicomponent solvent m...
متن کامل